Learning with Unreliable Boundary Queries

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visual learning with reliable and unreliable features.

Existing studies of sensory integration demonstrate how the reliabilities of perceptual cues or features influence perceptual decisions. However, these studies tell us little about the influence of feature reliability on visual learning. In this article, we study the implications of feature reliability for perceptual learning in the context of binary classification tasks. We find that finite se...

متن کامل

Learning languages with queries

The following deals with learning indexable classes of recursive languages by asking different kinds of queries about them. Among the types of queries considered here are superset, subset, equivalence and membership queries. The resulting models of learning with queries are compared to one another and to standard learning models like finite learning, conservative inference as well as learning i...

متن کامل

Incremental Learning With Sample Queries

The classical theory of pattern recognition assumes labeled examples appear according to unknown underlying class conditional probability distributions where the pattern classes are picked randomly in a passive manner according to their a priori probabilities. This paper presents experimental results for an incremental nearest-neighbor learning algorithm which actively selects samples from diff...

متن کامل

Learning with Boundary Conditions

Kernel machines traditionally arise from an elegant formulation based on measuring the smoothness of the admissible solutions by the norm in the reproducing kernel Hilbert space (RKHS) generated by the chosen kernel. It was pointed out that they can be formulated in a related functional framework, in which the Green's function of suitable differential operators is thought of as a kernel. In thi...

متن کامل

Robust Decentralized Learning Using ADMM with Unreliable Agents

Many machine learning problems can be formulated as consensus optimization problems which can be solved efficiently via a cooperative multi-agent system. However, the agents in the system can be unreliable due to a variety of reasons: noise, faults and attacks. Thus, providing falsified data leads the optimization process in a wrong direction, and degrades the performance of distributed machine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computer and System Sciences

سال: 1998

ISSN: 0022-0000

DOI: 10.1006/jcss.1997.1559